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a b s t r a c t

On the basis of the Eu’s generalized hydrodynamic (GH) theories for diatomic single species
gas and monatomic multi-species gas, an axisymmetric GH computational model for multi-
species gas containing monatomic and diatomic molecules is developed for the numerical
simulation of hypersonic rarefied gas flows. The multi-species GH computational model
includes monatomic and diatomic species of O2; N2, NO, O, N. The mass diffusion flux of
the gas mixture is included in the GH constitutive relation. In addition, the physical rela-
tionship between the mass diffusion and heat fluxes is added to the evolution equation
set. The multi-species GH theory includes the rotational nonequilibrium effect of diatomic
molecules by introducing excess normal stress associated with the bulk viscosity.

An efficient multi-species GH numerical solver for axisymmetric rarefied flows is then
developed by adopting various numerical techniques, such as an adequate nonlinear equa-
tion solver for the GH constitutive relation, an accurate flux splitting scheme, multi-grid
convergence acceleration and slip-wall boundary conditions. For validation, the proposed
computational model is applied to hypersonic rarefied flows over a space shuttle nose, a
sphere and a reentry body as well as 1D shock structure. By comparing the results of the
multi-species GH model with those of the Navier–Stokes equation and the DSMC, the accu-
racy and physical consistency of the GH computational model are critically examined.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In recent past several decades, the study of nonlinear gas flows in rarefied condition has been treated as an important
topic. It has been motivated by the needs of tools to efficiently predict aero-thermodynamic loads on vehicles operating
in high altitude. From this point of view, the development of computational models to predict gas flows over a large portion
of rarefied flow regime is important. The primary physical parameter characterizing the rarefied flow is the Knudsen number
[1], which is not small in high altitude condition. Though the Navier–Stokes (N–S) theory is capable of treating flow phenom-
ena in a small deviation from the local equilibrium condition, it is not known to remain valid in the flow regime of a rela-
tively large Knudsen number [2,3].

Much effort has been put into the development of a computational model beyond the N–S equations. Numerical models
to predict the rarefied flow can be classified into two categories: the ‘full kinetic (or molecular dynamic) model’ and the ‘fluid
dynamic model’. In the former category, the direct simulation Monte Carlo (DSMC) is the most successful and powerful
method [4–6]. At least, in terms of accuracy, there seems to be no alternative yet which can provide better results than
. All rights reserved.
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DSMC. However, computational load of DSMC is very costly in comparison with fluid dynamic model, particularly in the re-
gime near continuum limit [7]. Moreover, much experience is required to properly operate many tunable parameters.

On the other hand, fluid dynamic model is more attractive in terms of computational time cost and mathematical mod-
elling. They can be formulated by hyperbolic conservation laws and some additional nonconserved variables. The noncon-
served variables, such as the stress, the excess normal stress, the heat flux and the diffusion flux, are determined by the
evolution equations which are derived with the help of the Boltzmann equation [2,8]. So far, several fluid dynamic models
have been developed, such as the Bahtnagar–Gross–Krook (BGK) method [9,10], Burnett-type equations [11] and the Grad’s
moment method [2]. BGK method models the molecular collision term of the Boltzmann equation through the evolution pro-
cess from the initial nonequilibrium to the final equilibrium state over the relaxation time scale. Various computational
investigations based on the BGK theories have been carried out [9,10]. Some computations based on the Burnett-type equa-
tions, however, have shown several difficulties, such as numerical instability, violation of the second law of thermodynamics
and the treatment of boundary condition. While the Maxwell–Grad moment method satisfies the second law of thermody-
namics in the near equilibrium condition, it is not assured whether it is also valid in the condition far from the equilibrium
[2].

Because physical consistency is as much important as computational efficiency, it is desirable to derive a fluid dynamic
model for rarefied gas flows under the constraint of the fundamental physical laws, such as the second law of
thermodynamics.

The generalized hydrodynamic (GH) theory developed by Eu [2,8,12–14] is derived under the strict constraint of the sec-
ond law of thermodynamics. With the help of modern CFD techniques, there have been some effort and progress to establish
a GH computational model for a single species gas in two-dimensional setting [7,15]. However, the axisymmetric extension
of the diatomic GH model and the development of the multi-species GH model are prerequisite for realistic rarefied flow
simulations. In addition, the effects of chemical reaction and the heterogeneous collision between monatomic and diatomic
molecules have to be included for an accurate numerical modeling. Thus, the setup of the GH constitutive relations including
heterogeneous molecular composition of species is essential.

Keeping these in mind, the GH computational model for multi-species gas including monatomic and diatomic molecules
is developed, and it is extended into an axisymmetric formulation in the present work. By combining the monatomic multi-
species [2] and diatomic single species GH models [8,7,16], the multi-species GH constitutive relations are formulated. The
multi-species GH model takes into account the mass diffusion owing to molecular collision and thermal interaction. The ex-
cess normal stress is considered to represent the rotational energy of diatomic molecules.

To assess the reliability of the model and the accuracy of computational approximation, the proposed multi-species GH
computational method is applied to the hypersonic rarefied flows over an axisymmetric shuttle nose, a sphere and a reentry
body as well as 1D shock structure. The computed results are critically compared with the N–S and DSMC data.
2. Generalized hydrodynamic theory

Fluid dynamic approaches to compute rarefied flows generally start from the Boltzmann equation [2,17]. The formulation
of the nonequilibrium distribution function to treat the collision term of the Boltzmann equation provides the foundation of
each fluid dynamic theory, such as the BGK method [9], the Burnett equations [11] and the Grad’s moment method [2]. In
formulating those nonequilibrium distribution functions, there is no explicit constraint on the second law of thermodynam-
ics [2,15], which indicates that some of the methods may not guarantee the positive entropy production.

On the other hand, the GH theory is derived under the strict constraint of the second law of thermodynamics. The non-
equilibrium distribution function in the GH theory is defined as the following exponential form [2,12]:
f ¼ exp � 1
kBT

1
2

mc2 þ Hrot þ
X
aP1

XðaÞ � hðaÞ � l0

 !" #
: ð1Þ
A detailed explanation for Eq. (1) will be given later. Following the above definition of the nonequilibrium distribution
function, the entropy production can be expressed as
rent ¼ kBj sinhj; ð2Þ
where kB is the Boltzmann constant, and j is the first-order cumulant introduced in deriving the entropy production. The
detailed derivation of the entropy production can be found in the Ref. [2].

From Eq. (2), it is clear the entropy production is positive-definite, because j is proportional to the square root of squared
nonconserved variables (j will be explained in the later part of this paper). This means that the GH theory always satisfies
the second law of thermodynamics.

The primary difference between the GH model and the N–S model lies in the level of realizing the nonequilibrium effects
in rarefied flow. In rarefied flow, the frequency of molecular collision is substantially reduced, and molecules need a longer
time to reach the equilibrium state. The Navier–Stokes equations, on the contrary, assume the ‘locally thermal equilibrium’,
which indicates that the gas model would take a shorter time to reach the equilibrium state. Even for high Knudsen number,
the Navier–Stokes equations produce too much stress and heat flux (or too much momentum and energy exchange between
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molecules), which is clearly contrary to the physics of rarefied flow. As quantitatively compared in Section 4, the stress and
heat flux distributions provided by the GH model are asymptotically finite.

2.1. Derivation of the multi-species GH equations

By properly combining the GH theories for single species diatomic gas and monatomic gas mixtures [2,8], the general
multi-species GH theory for heterogeneous gas including both monatomic and diatomic molecules can be derived.

The derivation process of the multi-species GH theory starts from the definition of the nonconserved variables ðUðaÞi Þ in
terms of the nonequilibrium distribution function ðfiÞ and the molecular expressions ðha

i Þ [2,12]. From now on, subscript i or j
indicates the ith or jth species unless mentioned otherwise:
UðaÞi ¼ hh
ðaÞ
i fiðv; r; tÞi: ð3Þ
Here, hAi indicates the mean value of A over particle velocity space
hAi ¼
Z

AðviÞfiðv; r; tÞdv:
In Eq. (3), hðaÞi are defined as
hð1Þi ¼ ½micici�ð2Þ;

hð2Þi ¼
1
3

mic2
i �

pi

ni
;

hð3Þi ¼
1
2

mic2
i þmiwi � Cp;iTmi

� �
ci;

hð4Þi ¼ mici;

ð4Þ
where mi; pi and ni represents the molecular mass, the partial pressure and the number density of the ith species in gas mix-
ture, respectively. Cp;i is the specific heat of the ith species per mass at constant pressure. ½A�ð2Þ is defined by
½A�ð2Þ ¼ 1
2
ðAþ AtÞ � 1

3
TrðAÞI;
where Tr(A) is the trace part of matrix A, and I is the unit matrix.
With the definitions in Eq. (4), the nonconserved variables can be expressed as
Uð1Þi ¼ Pi; Uð2Þi ¼ Di;

Uð3Þi ¼ Q 0i ¼ Q i � Cp;iTJi; Uð4Þi ¼ Ji:
ð5Þ
In the above relations, Pi; Di; Q 0i; Q i and Ji represents the stress tensor, the excess normal stress, the heat flux vector, the
total heat flux including diffusion effect and the diffusion flux, respectively. In the GH theory, the stress tensor P is decom-
posed into hydrostatic pressure p, stress P and the excess normal stress D:
P ¼ pIþPþ DI:
The excess normal stress is related to the bulk viscosity and vanishes for monatomic molecules [2].
Inserting Eqs. (3)–(5) into the Boltzmann–Curtiss equation, the evolution equations of the nonconserved variables can be

obtained [16,18]. The Boltzmann–Curtiss equation is expressed as
@

@t
þ v � r þ ĵi

Ii

@

@ce

 !
fiðv; r; j; ce; tÞ ¼ R½f �; ð6Þ
where j and ĵ denotes the angular momentum vector of diatomic species and its magnitude, respectively. ce is the azimuth
Euler angle and R½f � is the collision integral. As mentioned previously, the nonequilibrium distribution function of the ith spe-
cies can be defined in the following exponential form:
fi ¼ exp � 1
kBT

1
2

mic2
i þ Hrot þ

X
aP1

XðaÞi � hðaÞi � l0;i

 !" #
; ð7Þ
where l0;i is the normalization factor. The symbol � denotes the scalar product of tensors XðaÞi and hðaÞi : Hrot is the rotational
Hamiltonian of diatomic species, which is defined as
Hrot ¼
J � J
2I

: ð8Þ
Here, I is the moment of inertia of a diatomic molecule.
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In Eq. (7), XðaÞi can be treated as the function of macroscopic variables, such as density ðqiÞ, flow velocity(u) and total
energy(E):
XðaÞi ¼ �UðaÞi gðaÞi ; ð9Þ
where gðaÞi can be approximated as follows [2,12]:
gð1Þi ’
1

2pi
; gð2Þi ’

3
2pi

; gð3Þi ’
1

piCp;iT
; gð4Þi ’

1
qi
: ð10Þ
With the definitions in Eqs. (4), (5) and (7), the Boltzmann–Curtiss equation provides the general form of the evolution equa-
tions as
q
d
dt

UðaÞi

q

 !
¼ �r � wðaÞi þ ZðaÞi þKðaÞi ; ð11Þ
where r � wðaÞi represent the fluxes of hðaÞi , which are mathematically one-order-higher than UðaÞi . In general, these terms are
reducible moments and can be set equal to zero [2,12].

In Eq. (11), the ZðaÞi can be described as follows:
Zð1Þi ¼ �2ðpi þxDiÞ½ru�ð2Þ � 2½Jidtu�ð2Þ � 2½Pi � ru�ð2Þ;

Zð2Þi ¼ �
2
3
x dtu � Ji þ c0ðDiIþPiÞ : ruþ 3

2
Ji � r

pi

qi

� �� �
;

Zð3Þi ¼ �Cp;iTðpi þxDiÞr ln T � dtu � ðPi þxDiIÞ � Q 0i � ru�Pi � Cp;irT;

Zð4Þi ¼ r � ðpiIþxDiIþPiÞ þ
qi

q
r � Pþ

X
j

ðxDjÞI
 !

�r � ðPi þxDiIÞ � Ji � ru� pdi:

ð12Þ
Here, dt means the material derivative, and A:B indicates the double scalar product or AijBij in tensorial notation.
c0 ¼ ð5� 3cÞ=2 with the specific heat ratio of c, and Q 0i ¼ Q i � Cp;iTJi is the heat flux vector without diffusion effect. In the
fourth relation, di ¼ rðni=nÞ. The parameter x is 1 for diatomic species and 0 for monatomic species.

Eq. (11) is the universal evolution equation for the fluid dynamic methods, and it does not have any special approximation
[2,12]. The difference of the GH equations from other fluid dynamic models lies in the definition of the dissipation terms or
KðaÞi .

The dissipation terms of the GH equations are defined as the following relations:
Kð1Þi ¼ �2piqðjÞ
Xr

j¼1

R
ð11Þ
ij Pj; ð13Þ

Kð2Þi ¼ �
2
3

piqðjÞ
Xr

j¼1

R
ð22Þ
ij Dj; ð14Þ

Kð3Þi ¼ �piCp;iTqðjÞ
Xr

j¼1

R
ð33Þ
ij Q 0j þR

ð34Þ
ij

Jj

qj

 !
; ð15Þ

Kð4Þi ¼ �qðjÞ
Xr

j¼1

R
ð43Þ
ij Q 0j þR

ð44Þ
ij

Jj

qj

 !
; ð16Þ
where
qðjÞ ¼ sinhj
j

: ð17Þ
j can be derived by using the cumulant approximation, and it is expressed as
j2 ¼ g
kBT

Xr

i;j¼1

R
ð11Þ
ij Pi : Pj þR

ð22Þ
ij DiDj þ Q 0i � R

ð33Þ
ij Q 0j þR

ð34Þ
ij

Jj

qj

 !
þ Ji

qi
� R

ð43Þ
ij Q 0j þR

ð44Þ
ij

Jj

qj

 !" #
; ð18Þ
where g is the relative velocity of molecules defined as
g ¼ 1

n2d2

ffiffiffiffiffiffiffiffiffiffiffi
m

2kBT

r
; ð19Þ
and r indicates the number of species.
Unlike ZðaÞi of Eq. (12), KðaÞi and j of Eqs. (13)–(18) contain R

ðabÞ
ij : R

ðabÞ
ij are related to the collision integrals R½f � between

various species, which can be defined by R
ðabÞ
ij ¼ g

kBT gðaÞi RðabÞ
ij gðbÞj : RðabÞ

ij are the collision bracket integrals and can be determined
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by molecular properties such as molecular mass, random velocity and so on. As shown in Table 3.2 of Ref. [12], the math-

ematical process to completely determine RðabÞ
ij is too complicated. For an efficient computational implementation without

compromising the essence of the collision bracket integrals, the following simple formulation is used [12]:
� 2½ru�ð2Þ ¼ qðjÞ
Xr

j¼1

R
ð11Þ
ij Pj; ð20Þ

� c0r � u ¼ qðjÞ
Xr

j¼1

R
ð22Þ
ij Dj; ð21Þ

� r ln T ¼ qðjÞ
Xr

j¼1

R
ð33Þ
ij Q 0j þR

ð34Þ
ij

Jj

qj

 !
; ð22Þ

� p
qi

di ¼ qðjÞ
Xr

j¼1

R
ð43Þ
ij Q 0j þR

ð44Þ
ij

Jj

qj

 !
: ð23Þ
According to Eu’s works [2,8,12–14], Eqs. (20)–(23) are still reliable in large Knudsen number flows. Thus, they can be
used to obtain KðaÞi without the detailed determination of the collision integrals RðabÞ

ij , which eventually leads to the proper
constitutive relations for the multi-species GH computational model.

2.2. Determination of KðaÞi

In order to obtain KðaÞi without R
ðabÞ
ij , Eqs. (13)–(16) are firstly converted into the following matrix equations:
Kð1Þ ¼ �qðjÞSPs; ð24Þ
Kð2Þ ¼ �qðjÞRDs; ð25Þ
Kð3;4Þ ¼ �qðjÞMQ s; ð26Þ
where bold characters are defined as follows:
Kð1Þ ¼

Kð1Þ1
2p1

..

.

Kð1Þr
2pr

0
BBBB@

1
CCCCA; S ¼

R
ð11Þ
11 � � � R

ð11Þ
1r

..

. . .
. ..

.

R
ð11Þ
r1 � � � Rð11Þ

rr

0
BB@

1
CCA; Ps ¼

P1

..

.

Pr

0
BB@

1
CCA;

Kð2Þ ¼

3Kð2Þ1
2p1

..

.

3Kð2Þr
2pr

0
BBBB@

1
CCCCA; R ¼

R
ð22Þ
11 � � � R

ð22Þ
1r

..

. . .
. ..

.

R
ð22Þ
r1 � � � Rð22Þ

rr

0
BB@

1
CCA; Ds ¼

D1

..

.

Dr

0
BB@

1
CCA;

Kð3;4Þ ¼

Kð3Þ1
p1Cp;1T

..

.

Kð3Þr
pr Cp;r T

Kð4Þ1

..

.

Kð4Þr

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; M ¼

R
ð33Þ
11 � � � R

ð33Þ
1r R

ð34Þ
11 � � � R

ð34Þ
1r

..

. . .
. ..

. ..
. . .

. ..
.

R
ð33Þ
r1 � � � Rð33Þ

rr R
ð34Þ
r1 � � � Rð34Þ

rr

R
ð43Þ
11 � � � R

ð43Þ
1r R

ð44Þ
11 � � � Reð44Þ

1r

..

. . .
. ..

. ..
. . .

. ..
.

R
ð43Þ
r1 � � � Rð43Þ

rr R
ð44Þ
r1 � � � Rð44Þ

rr

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; Q s ¼

Q 01
..
.

Q 0r
J1
q1

..

.

Jr
qr

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

Then, Eqs. (20)–(23) can then be expressed as follows:
qðjÞ
Xr

i¼1

Pi ¼ �2½ru�ð2Þ
Xr

i;j¼1

ðS�1Þij; ð27Þ

qðjÞ
Xr

i¼1

Di ¼ �r � u
Xr

i;j¼1

ðR�1Þij; ð28Þ

qðjÞ
Xr

i¼1

Q 0i ¼ �r ln T
Xr

i;j¼1

ðM�1Þð33Þ
ij �

Xr

i;j¼1

ðM�1Þð34Þ
ij

p
qi

di; ð29Þ

qðjÞ
Xr

i¼1

Ji

qi
¼ �r ln T

Xr

i;j¼1

ðM�1Þð43Þ
ij �

Xr

i;j¼1

ðM�1Þð44Þ
ij

p
qi

di: ð30Þ
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Here, the relations of the first-order Chapman–Enskog transport coefficients are introduced [12]:
l0 ¼
Xr

i;j¼1

ðS�1Þij; lb;0 ¼
Xr

i;j¼1

ðR�1Þij; ð31Þ

k0 ¼
Xr

i;j¼1

ðM�1Þð33Þ
ij ; ð32Þ

D0
T;i ¼

Xr

j¼1

1
qj
ðM�1Þð34Þ

ij ; D0
ij ¼

p
qj
ðM�1Þð44Þ

ij ; ð33Þ
where lb is the bulk viscosity, and k denotes the heat conductivity multiplied by temperature ðk ¼ kTÞ: Dij and DT;i represents
the diffusion and the thermal diffusion coefficient, respectively.

By using Eqs. (31)–(33) and the symmetry of R
ðabÞ
ij ¼ R

ðbaÞ
ij (or equivalently, the symmetry of ðM�1Þð43Þ

ij ¼ ðM�1Þð34Þ
ij ), Eqs.

(27)–(30) can be expressed in terms of the first-order Chapman–Enskog transport coefficients:
qðjÞ
Xr

i¼1

Pi ¼ �2l0½ru�ð2Þ; ð34Þ

qðjÞ
Xr

i¼1

Di ¼ �lb;0r � u; ð35Þ

qðjÞ
Xr

i¼1

Q 0i ¼ �k0r ln T � p
Xr

i¼1

D0
T;idi; ð36Þ

qðjÞ
Xr

i¼1

Ji

qi
¼ �

Xr

i¼1

D0
T;iqir ln T �

Xr

i;j¼1

D0
ijdi: ð37Þ
From Eqs. (34)–(37), the proper relations for the right hand side of Eqs. (20)–(23) are obtained as follows:
½ru�ð2Þ ¼ � 1
2l0

qðjÞ
Xr

i¼1

Pi; ð38Þ

r � u ¼ � 1
lb;0

qðjÞ
Xr

i¼1

Di; ð39Þ

r ln T ¼ � 1
k0

qðjÞ
Xr

i¼1

Q 0i; ð40Þ

p
qi

di ¼ �pqðjÞ ðD�1Þi
Ji

qi
� kT;i

k0
Q 0i

� �
; ð41Þ
where D is the matrix of the diffusion coefficients Dij, and kT;i is the thermal diffusion ratio. The following relation is valid
between the thermal diffusion and binary collision diffusion coefficients [17,12]:
DT;i ¼
Xr

j¼1

kT;jDij: ð42Þ
In deriving Eqs. (38)–(41), it is assumed that the terms such as r � u; ½ru�ð2Þ and k0r ln T are global properties, and they
do not explicitly depend on the species. For example, the stress of each species is defined as Pi ¼ li½ru�ð2Þ, not as
Pi ¼ li½rui�ð2Þ, and the global stress becomes the sum of Pi i:e:; P ¼

Pr
i¼1Pi ¼ �2l0½ru�ð2Þ ¼ �2

Pr
i¼1li

� �
½ru�ð2Þ and

	
Pr

i¼1li ¼ l0Þ. The diffusion flux Ji consists of the binary collision diffusion and the thermal diffusion:
Ji

qi
¼
Xr

j¼1

Dijdi þ DT;ir ln T ¼
Xr

j¼1

Dijðdi þ kT;jr ln TÞ: ð43Þ
By inserting Eqs. (38)–(41) into Eqs. (20)–(23) and Eqs. (13)–(16), the final formulation of KðaÞi can be obtained:
Kð1Þi ¼ �2
pi

l0
qðjÞ

Xr

i¼1

Pi; ð44Þ

Kð2Þi ¼ �
2
3

c0pi

lb;0
qðjÞ

Xr

i¼1

Di; ð45Þ

Kð3Þi ¼ �
piCp;iT

k0
qðjÞ

Xr

i¼1

Q 0i; ð46Þ

Kð4Þi ¼ �pqðjÞ ðD�1Þi
Ji

qi
� kT;i

k0
Q 0i

� �
: ð47Þ
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The heterogeneous collision between monatomic and diatomic molecules is taken into account through the diffusion ma-
trix in Eq. (47). Since only diatomic species can produce the excess normal stress, Di is vanished for monatomic species. The
parameter x is introduced in Eq. (12) to check the excess normal stress. For monatomic species, the excess normal stress
relation ðKð2Þi Þ and Di are discarded by setting x ¼ 0.

In the diffusion relations, the binary diffusion coefficient ðDijÞ and the thermal diffusion ratio ðkT;iÞ corresponding to mon-
atomic–monatomic, diatomic–diatomic and monatomic–diatomic collisions have to be distinguished. According to Ref. [17],
they lie in the range of Dmonatomic—monatomic ffi 0:1—0:2, Dmonatomic—diatomic ffi 0:4—0:5 and Ddiatomic—diatomic ffi 0:6—0:8. In this work,
Dmonatomic—monatomic ¼ 0:18, Dmonatomic—diatomic ¼ 0:48 and Ddiatomic—diatomic ¼ 0:65. The thermal diffusion coefficient kT;i is defined
as kT;i ¼ aðni=nÞðnj=nÞ, where a ffi 0:02 and ðni=nÞ is the mole fraction of the ith species.

By using the relations of Eqs. (20)–(23) and Eqs. (38)–(41), j (or Eq. (18)) can be converted into the following expression:
j2 ¼ g
kBT

Xr

i;j¼1

Pi : Pj

l0
þ c0

DiDj

lb;0
þ

Q 0i � Q
0
j

k0
þ pDijdi � dj

" #
: ð48Þ
In summary, two key-ingredients for the computations of the multi-species GH equations are examined in this section:
one is the determination of dissipation terms KðaÞi in an explicit from of conserved and nonconserved variables, and the other
is the appropriate treatment of heterogeneous molecular collisions.

2.3. The constitutive relations of the multi-species GH theory

The constitutive relations of the multi-species GH theory can be obtained by inserting Eq. (12) and Eqs. (44)–(47) into Eq.
(11):
q
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Eqs. (49)–(52) contain the cases of the single species GH theory for diatomic gas and the multi-species GH theory for mon-
atomic gas. From

Pr
i¼1Pi ¼ P;

Pr
i¼1Di ¼ D and

Pr
i¼1Q 0i ¼ Q 0, and by ignoring the diffusion relations, they reduce to the GH

constitutive relations for diatomic single species gases. Furthermore, if the excess normal stress for diatomic species is ig-
nored (or x ¼ 0), the GH constitutive relations for single species monatomic gases can be obtained.

Together with the constitutive relations, the following extended conservation laws become the axisymmetric governing
equations for the multi-species GH theory:
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where H and Hv is the inviscid and viscous axisymmetric source term, respectively, defined as in the N–S theory. The last line
of Eq. (53) is the chemical species equation explained in Appendix A.

Although the derivation process of the GH governing equations is rather complicated, the mathematical form is quite sim-
ilar to the conventional N–S equations except for the presence of the excess normal stress. The nonconserved variables, such
as P; D; Q and J, are determined from the GH constitutive relations.

The thermodynamic path of the GH theory is exact so long as no approximation is introduced in the derivation procedure.
Firstly, the evolution equation in Eq. (11) including Eq. (12) is thermodynamically exact since there is no assumption. For fi in
Eq. (7) and KðaÞi , the thermodynamic path may depend on the definition of the term XðaÞi in fi and KðaÞi . Therefore, the GH the-
ory is theoretically solid in its original form but, as in Eq. (9), some approximation at implementation step may not guarantee
the exact thermodynamic path. From this perspective, we are going to examine the level of physical/numerical accuracy and
robustness of the GH equations, which is seriously deteriorated in other continuum-based computational models such as
Burnett-type equations. Considering the violation of the second law of thermodynamics of the Burnett equations, the GH
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theory is physically much more preferable than the Burnett equations and the Navier–Stokes equation. In addition, it has
been proved that the GH theory satisfies the H-theorem so that the final entropy production, unless the flow is isentropic,
is always positive-definite [2,8,12].
3. Computational model for the multi-species GH theory

The constitutive relations of the multi-species GH theory are composed of a coupled set of nonlinear differential equa-
tions, and it is very costly to directly solve them. With a suitable physical assumption, however, they can be converted into
a set of nonlinear algebraic equations. In this section, the computational procedure of the multi-species GH theory is de-
scribed. In addition, the axisymmetric extension of the GH constitutive relations and the slip-wall boundary condition are
explained.

3.1. The computational model of the GH constitutive relations

The left-hand-side of the constitutive GH relations (Eqs. (49)–(52)) is the time-derivative term of the nonconserved vari-
ables. The time scales to reach the equilibrium state between the conserved variables (q, u and E) and the nonconserved vari-
ables (P; D and Q) are generally different depending on the order of gas particle moments [1]. According to Eu’s adiabatic
approximation [2], the nonconserved variables change much faster than the conserved variables and quickly reach to steady
states. Thus, the time-derivative term can be neglected, and Eqs. (49)–(52) can be simplified into a set of nonlinear algebraic
equations. For example, Eq. (49) becomes
pi
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qðjÞ

Xr

i¼1

Pi ¼ �2ðpi þxDiÞ½ru�ð2Þ � 2½Jidtu�ð2Þ � 2½Pi � ru�ð2Þ: ð54Þ
After a suitable nondimensionalization, the dimensionless algebraic form of the constitutive relations can be obtained as
follows:
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And, the first-order cumulant j in Eq. (48) becomes
j2 ¼ c
Rep
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Pi : Pj þxc0fbDiDj þ
ðc� 1ÞPr

T
Q 0i � Q
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j þ

Dij

q0Sc
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� �
; ð59Þ
where Sc and Pr is the Schimdt number and the Prandtl number, respectively.
In Eq. (59), fb ¼ lb=l, and the constant c takes a value between 1.0138 (Maxwellian molecule) and 1.2232 ðm ¼ 3Þ [17]. m is

the exponent of the inverse power law for the gas particle interaction potential. The subscript 0 indicates the first-order
approximation of the Chapman–Enskog expansion or the value obtained by the N–S theory. Thus, the stress and the heat
flux by the N–S theory can be described as
P0 ¼ �2l½ru�ð2Þ; D0 ¼ �lbr � u; Q 0 ¼ �kr ln T: ð60Þ
Eqs. (55)–(59) can be solved by a suitable numerical solver. In computation, the N–S stress and heat flux can be used as
the initial conditions of the GH constitutive relations. Overall computational procedure will be explained in Section 4.

3.2. The axisymmetric GH constitutive relations

The axisymmetric GH computational model is obtained by decomposing P; Q and J into cylindrical coordinates, ðr; h; zÞ
with the assumption that all components of the h direction are zero, i.e., uh;

@
@h ; Q 0h ¼ 0. Care must be taken that the hh com-

ponent of tensor, such as Phh, does not vanish since Phh ¼ �ðPzz þPrrÞ. All components of the axisymmetric constitutive
relations are listed in Appendix B.
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3.3. Slip-wall boundary conditions

Appropriate slip-wall boundary conditions are crucial in rarefied flow computations because the velocity-slip and tem-
perature-jump provide a significant impact on computational accuracy. Since rarefied gas molecules near wall boundary
do not have enough collisions to reach the equilibrium state, the non-slip boundary condition is not consistent with the
molecular physics. As a slip boundary condition, the Langmuir slip condition [21] and the Maxwell–Smoluchowski condition
[25,26] are employed in the present work.
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Fig. 1. Normalized density distribution for a diatomic gasðM ¼ 2:0Þ. Experiment data are taken from Alsmyer’s work [34] and diatomic GH result by Al-Goul
et al. [37] is also depicted.
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Fig. 2. Normalized temperature distribution for a diatomic gas ðM ¼ 2:0Þ. Diatomic GH result by Al-Goul et al. [37] is also depicted.
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The Langmuir boundary condition can be expressed as
us ¼ auw þ ð1� aÞug ; Ts ¼ aTw þ ð1� aÞTg ; ð61Þ
where the subscript s represents slip quantity, w stands for the wall and g denotes the local gas flow value adjacent to the
wall. The parameter a plays a role of determining the portion of wall and gas characteristics, which can be described as [22–
24]
a ¼ nN2
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bN2

p
p

1þ
ffiffiffiffiffiffiffiffiffiffi
bN2

p
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Fig. 3. Normalized density distribution for a diatomic gasðM ¼ 6:1Þ. Experiment data are taken from Alsmyer’s work [34].
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where nN2 and nO2 represents the mole fraction of nitrogen and oxygen, respectively. Other species with very small number
densities are ignored. The parameter b depends on the wall temperature Tw and the interfacial interaction parameter. For the
case of the gas–surface interaction, b can be expressed as
Fig. 5.
ð.Þ by
[37]. Sy
b ¼ Al
kBT

exp
De

kBTw

� �
; ð63Þ
where A; De and l is the mean area of a site, the potential parameter and the mean free path, respectively. In many cases, the
potential parameter De can be experimentally obtained. De ¼ 1:32 kcal=mol is used for Ar–Al or N2–Al molecular interaction
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model. De for oxygen varies in the range of 3–8 kcal/mol according to the surface material and De ¼ 5 kcal=mol is taken in the
present work. The merit of the Langmuir boundary condition is that every parameter is determined without any tunable
parameter.

The Maxwell–Smoluchowski boundary condition can be expressed as [25,26]
Fig. 7.
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Qs and Q n are the tangential and normal heat transfer components in gas, and ss is the viscous stress component correspond-
ing to the skin friction. R is the specific gas constant. rv and rT are the accommodation coefficients usually taking a value
from 0.2 to 0.8. The term proportional to ð�QsÞ in Eq. (64) is associated with the thermal creep phenomenon, and it is ignored
for constant wall temperature.

Furthermore, the second-order Maxwell boundary condition and the second-order boundary condition by Karniadakis
and Beskok are employed [25,26]. The second-order Maxwell boundary condition can be expressed as
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Fig. 12. Nondimensionalized density contours (log-scaled) by multi-species N–S and multi-species GH solvers.
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The second-order boundary condition by Karniadakis and Beskok can be represented as
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Fig. 13. Nondimensionalized temperature contours by multi-species N–S and multi-species GH solvers.
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The temperature boundary condition is the same as Eq. (67). The effects of the boundary conditions will be discussed in Sec-
tion 4.2.

4. Numerical methods and computational results

The multi-species N–S solver including chemical reaction model is used as a baseline solver. The multi-species GH solver
is obtained by adding the multi-species GH constitutive relations combined with the Broydn nonlinear iterative solver [27]
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Fig. 15. Density distributions (GH results only) along the stagnation streamline (x = 0: stagnation point).
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Fig. 16. Temperature distributions along the stagnation streamline (x = 0: stagnation point).
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into the multi-species N–S solver. The computational code employs accurate and efficient numerical techniques based on
finite volume method. As a cell-interface numerical flux, AUSMPW+, which is an improved AUSM-type scheme, is used
[28]. The second-order MUSCL with van Albada limiter is used to avoid numerical oscillation, and the LU-SGS scheme is
adopted as a time integration method. Since chemical and rarefied nonequilibrium effects cause small time step and slow
convergence, a four-level multi-grid method with parallel computing is used to minimize computational load. Chemical
source term is implicitly treated with the diagonal term of the source term Jacobian matrix ð@S=@Q Þ.

The multi-species GH solver has been developed by the step-by-step strategy. Starting from the one-dimensional dia-
tomic single species GH solver, it has been expanded into the two-dimensional and axisymmetric single species GH solver
x/Rb

N
or

m
al

iz
ed

Te
m

pe
ra

tu
re

-1 -0.5 00

20

40

60

80

100 DSMC by Moss & Bird
GH Single Species (Diatomic)
GH Multi-Species (Nonslip BC)
GH Multi-Species (Langmuir BC)
GH Multi-Species (Maxwell BC, 1st Order)
GH Multi-Species (Maxwell BC, 2nd Order)
GH Multi-Species (Karniadakis BC, 2nd Order)

Fig. 17. Temperature distributions (GH results only) along the stagnation streamline (x = 0: stagnation point).
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for diatomic gas, and the axisymmetric multi-species GH solver. Each GH solver has been critically examined through suit-
able validation test cases.

4.1. Validation of the GH solvers for single species gases

Since the accuracy of the multi-species GH solver depends on that of single species monatomic and diatomic GH solvers,
the performance of the diatomic GH solver is firstly examined. One-dimensional normal shock wave structure is computed
using the one-dimensional diatomic GH solver. The Knudsen number is fixed as 1, and the Reynold number is calculated by
Eq. (69) for the inflow Mach number of 1–10 [29]:
Kn ¼
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Fig. 19. Error history curves of the N–S and GH equations. CFL number is 0.01.

Fig. 20. Normalized density contours around the sphere.
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For nitrogen gas, the viscous power law ðl ¼ TmÞ is used with the exponent of m ¼ 0:78. The computed results of the nor-
malized density and temperature distributions for M ¼ 2:0 and 6.1 are presented in Figs. 1–4. In Figs. 1 and 3, the diatomic
GH result is the closest to the experimental data, compared with the N–S and monatomic GH results. As seen in Figs. 1 and 2,
the present diatomic GH results agree well with the results by Al-Ghoul et al. [37].

The inverse shock thickness, which is one of the important parameters characterizing the shock wave structure, is de-
picted in Fig. 5. The inverse shock thickness is defined as follows:
1
d
¼ jdq=dxjmax

q2 � q1
: ð70Þ
Compared with the N–S and monatomic GH results, the diatomic GH equations provide the closest result to many exper-
imental data [30–34] as well as the DSMC result [35]. In addition, the present GH result agrees well with the computation by
Al-Ghoul et al. [36,37]. The normalized density and overall temperature distributions are also compared with the DSMC re-
sults. As shown in Figs. 6 and 7, the multi-species GH results show a good agreement with the DSMC data [35].

To examine the entropy characteristic, the normalized entropy and entropy generation rate of the one-dimensional nor-
mal shock are compared with the work by Chigullapalli et al. [39]. The test gas is argon. The entropy is calculated by [40]
S� S0 ¼ qR
1

c� 1
ln

T
T0

� �
� ln

q
q0

� �� �
; ð71Þ
and the entropy generation rate is calculated by [39,40]
_S ¼ Uvis

T
þ l

Pr
cR

c� 1
ðrT � rTÞ; ð72Þ
where Uvis is the viscous dissipation function.
Figs. 8 and 9 show the normalized entropy distribution and the entropy generation rate. In Fig. 8, there is no significant

difference among the ES–BGK, GH and N–S results, but the GH result shows a slightly faster rise of entropy than the N–S
result. In Fig. 9, the GH result shows quite a reasonable rate compared with the third order ES–BGK result.

From the comparisons of one-dimensional tests, we can observe that the GH results are much more accurate than the N–S
results and agree well with experimental or DSMC data.

The two-dimensional GH solver for diatomic single species gas is applied to the hypersonic rarefied flow over a cylinde-
rical geometry. Two different inflow conditions are tested. The first is the same as in Ref. [7]: M1 ¼ 20; Kn1 ¼ 0:05;
Re1 ¼ 593; Tw ¼ 291:6 K and T1 ¼ 20 K. The length scale is normalized by the cylinder radius. In Fig. 10, the log-scaled den-
sity distribution along the stagnation streamline is depicted. The present diatomic GH result yields a very closer result to the
DSMC result by Wu et al. [38] than other computations.

The second case is the same as in Ref. [41]: M1 ¼ 10; Kn1 ¼ 0:1; Re1 ¼ 148:3; Tw ¼ 208:4 K and T1 ¼ 1000 K. The DSMC
result is obtained by the authors using the MONACO Ver. 2.0 with the variable hard sphere (VHS) molecular model. The
accommodation coefficient for wall boundary condition is set to be 1 (fully accommodated) as in Ref. [41] for comparison
purpose. Since the DSMC boundary condition has a different mechanism from the Langmuir boundary condition (MONACO
Fig. 21. Normalized temperature contours around the sphere.
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has the accommodation coefficient while the Langmuir boundary condition does not), we cannot guarantee that the two
boundary conditions are fully compatible. Even in this case, the diatomic GH result with the Langmuir boundary condition
shows a better agreement with the DSMC data than the Burnett equation result with the Maxwell boundary condition of the
accommodation coefficient 1 [41]. However, more investigation on the parameters of the Langmuir boundary condition
which are consistent with the GH theory is necessary.

The log-scaled density profile along the symmetric axis is shown in Fig. 11. Compared with the Augmented Burnett and
N–S data, the diatomic GH result yields a relatively larger shock thickness, and it is the closest to the DSMC data. The larger
shock thickness is a typical phenomenon in nonequilibrium rarefied flows. Low density causes the mean free path of gas
molecules to increase, and the molecules experience less collision. As a result, it takes a longer time to reach the equilibrium
state, and the molecules travel a distance as long as the shock thickness.
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From the comparisons, it can be seen that the present diatomic GH computational model properly describes the nonequi-
librium flow physics.

4.2. Multi-species test case 1: a space shuttle nose flow

The multi-species GH computational model is applied to hypersonic rarefied flows over a space shuttle nose, a sphere, and
a reentry body. The first test case is a space shuttle nose. The geometry is axisymmetric, and the cross section along the axis
is hyperbola, which has a nose radius of 1.362 m and an asymptotic half angle of 42.5�. The grid system is 51 � 81, and it is
normalized by the nose radius. The inflow condition, geometry and DSMC data are taken from the work by Moss and Bird
[42]. The inflow condition is M1 ¼ 25:3; Kn1 ¼ 0:227; Re1 ¼ 170; Tw ¼ 223 K and T1 ¼ 560 K.
Fig. 23. Streamline pattern around the sphere.
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Four solvers were tested: the N–S solvers for single and multi-species gas, the diatomic GH solvers for single and multi-
species gas. Fig. 12 shows the log-scaled density contours obtained by the multi-species N–S and GH solvers. Two results are
quite different in terms of shock front position and shock thickness. The shock thickness along the symmetric axis is thicker
in the GH model. In Fig. 13, temperature contours are compared, which are also different owing to the nonequilibrium effect.
The log-scaled density and temperature distributions along the stagnation streamline are compared in Figs. 14–17, and the
GH results are particularly depicted in Figs. 15 and 17 for clarity. It is seen that the GH results are closer to DSMC for every
boundary condition. This strongly supports the superior validity of the GH equations.

Both the Maxwell condition and the Langmuir condition provide the results comparable to DSMC data, although the inter-
nal structures of the two conditions are somewhat different. While the Maxwell boundary condition includes the density-
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dependent term and the gradient of velocity and temperature, the Langmuir boundary condition does not contain these
terms. Considering that the Langmuir boundary condition does not require any tunable parameter, the accuracy and/or
robustness of the GH solver is expected to be further improved by exploring a more accurate formulation (especially, the
temperature condition) and the exact potential parameter value ðDeÞ.

In Figs. 16 and 17, the second-order Maxwell boundary condition produces a lower peak value, a faster arising and more
diffused temperature distribution than the first-order Maxwell boundary condition. The reason is that the coefficients of the
second terms in Eqs. (66) and (67) correspond to the square of Knudsen number, which induce a larger velocity-slip and tem-
perature-jump as Knudsen number increases. The second-order boundary condition by Karniadakis and Beskok is as good as
the second-order Maxwell boundary condition. It appears that the influence of higher-order terms is dominant in the tem-
perature condition (Eq. (67)) rather than the velocity conditions (Eqs. (64) and (66)).

From the log-scaled density profile in Figs. 14 and 15, the DSMC data indicate most of mass flow is concentrated near the
front surface. Under this nonequilibrium condition, molecules cannot experience sufficient collisions until they reach the
nose surface. Slopes of the density curves indicate that the N–S model predicts superfluous molecular collisions, which sug-
gests that the multi-species GH results are more consistent with the nonequilibrium physics of rarefied flows.
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Rm / Rb = 0.215
L / Rb = 1.0566
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Rn Rm
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Fig. 27. Geometry of a reentry body [44].

Fig. 28. Normalized density contours around the reentry body.
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are utilized for convergence acceleration. Figs. 20 and 21 show the density and temperature contour, respectively. In Fig. 20,
the multi-species GH result is highly rarefied at the wake region, and at the same time it is more diffused, which is physically
reasonable compared to the DSMC result [43]. In Fig. 21, the GH result shows a larger shock thickness in front of the stag-
nation point and a lower temperature distribution at the wake region. This is because, as shown in Fig. 22, the magnitude of
the GH stress is asymptotically finite, which has been observed earlier in Refs. [7,15]. The asymptotic behavior of the GH
stress triggers an earlier rise of non-continuum flow characteristics, while the N–S stress seems to be too large to predict
non-continuum flow characteristics. Considering that the stress under rarefied flow condition is usually limited to a finite
value due to less frequent molecular collisions, the asymptotic stress behavior of the GH model is one of the factors to pro-
duce the closer results to the DSMC data. In Fig. 23, streamline pattern shows that no vortex is formed at the wake region,
which is caused by very low molecular population. The local mean free path increases so that molecules can expand without
much collision.

The normalized density and temperature distributions along the stagnation streamline are plotted in Figs. 24 and 25. The
local Knudsen number is also depicted in Fig. 26, which is calculated by
x/
R

b

Knlocal ¼
ffiffiffiffiffiffi
cp
2

r
Mlocal

Relocal
:

In Fig. 25, the overall temperature of the DSMC result, obtained from the following approximate relation in Ref. [6], is
presented.
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Fig. 32. Temperature distributions in the wake region of the reentry body.
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Taverage ¼
3Ttrans þ fTint

3þ f
:

f is the number of degrees of freedom of internal energy, which is two in this test case since rotational energy plays a dom-
inant role. Although the accuracy of the overall temperature is not fully guaranteed, it can be used as a reference value to
check the qualitative trend. Overall temperature distribution of the multi-species GH result with the Maxwell–Smoluchow-
ski boundary condition shows a fairly good agreement with the DSMC data. However, some deviations can be observed in
terms of the peak value and the curve slope. As mentioned in the derivation of the GH computational model in Section 2.1,
this is related to the approximation of the collision bracket integrals (RðabÞ

ij or RðabÞ
ij ) and the slip-wall boundary conditions. As

shown in Eqs. (20)–(23), the collision bracket integrals are calculated not completely but approximately for the purpose of
computation efficiency. A more elaborate approximation of the collision bracket integrals is essential to enhance computa-
tional accuracy. The other aspect is to improve the accuracy of the slip-wall boundary conditions. As shown in Section 4.2,
the choice of a slip-wall boundary condition brings a substantial difference. More investigation on slip boundary conditions
fit to the multi-species GH equations is certainly necessary.

4.4. Multi-species test case 3: hypersonic rarefied flow over a reentry body

The final test case of the multi-species GH computational model is a reentry body problem. The focus of this test is to
evaluate expansion characteristics of the GH model at the wake region under highly rarefied flow condition. Fig. 27 shows
the geometry of the reentry body in Dogra’s work [44]. The inflow condition is M1 ¼ 23:47; Kn1 ¼ 0:2238; Re1 ¼
155:5; Tw ¼ 1000 K and T1 ¼ 211:1 K, which represents the 105 km-altitude condition of air. Fig. 28 shows the density con-
tour of the N–S and multi-species GH solvers. There seems to be no particular difference. In Fig. 29, however, the temperature
predicted by the multi-species GH equations is much lower than that of the N–S equations, especially in the wake region.
Fig. 30 shows a vortex-free streamline pattern around the reentry body.

To quantitatively examine the computational accuracy of the multi-species GH equations, the density and temperature
distributions at the wake region are compared with the DSMC and N–S data in Figs. 31 and 32. Though some differences
are observed, the GH results are closer to the DSMC data. In particular, the tendency of the temperature distribution by
the N–S equations is grossly deviated from the DSMC data. Fig. 33 shows the pressure distribution along the reentry body
surface. The pressure on the rear side of the reentry body drastically decreases by highly rarefied flow condition. Compared
to the N–S result, the GH result with the Maxwell–Smoluchowski boundary condition yields a fairly good agreement with
the DSMC data even at the wake region. However, some deviations are still observed. Fig. 34 shows the local Knudsen num-
ber distribution along the reentry body surface, which is abruptly increasing due to the rapid flow expansion behind the cor-
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ner. The small Knudsen number approximation of the collision bracket integrals seems to be one of the limitations in dealing
with locally high-rarefied flows.

5. Conclusion

For efficient computations of hypersonic rarefied gas flows, the multi-species generalized hydrodynamic computational
model is developed. It is established by combining two GH equations: one is the monatomic multi-species GH theory and the
other is the diatomic single species GH theory. The constitutive relations of the multi-species GH theory are consistent with
the second law of thermodynamics. In derivation process, the dissipation term related to the positive entropy production is
explicitly determined in terms of the nonconserved variables. The heterogeneous collision between monatomic and diatomic
molecules is deliberated in the diffusion modeling. With the multi-species GH theory, the GH rarefied flow solver is extended
into an axisymmetric formulation.

By simulating hypersonic flows over axisymmetric bodies, it is observed that the present multi-species GH solver is more
robust and yields closer results to the DSMC data than other continuum-based solvers. By incorporating nonequilibrium ef-
fects such as chemical reaction and rarefaction effects, the multi-species GH computational model showed an enhanced
accuracy than existing single species GH models.

At the same time, some deviations from the DSMC data are still observed, which indicates a room for more elaboration in
dealing with highly nonequilibrium flows. It suggests that more sophisticated computation of the collision bracket integrals
and further development of the slip-wall boundary condition will greatly enhance the accuracy of the present GH compu-
tational model. Although the multi-species GH theory (one of the ‘fluid dynamic models’) currently does not catch up with
DSMC (‘full kinetic model’) in terms of computational accuracy, the GH theory has a merit as a robust continuum-based mod-
el to efficiently analyze rarefied flows. Considering the fact that various advanced CFD techniques can be readily applied to
the GH equations, the GH numerical model is expected to be improved near future.
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Appendix A. Chemical reaction model

Five species air model containing N2, O2, N, O and NO is used [3,19,20]. For the reaction rate constant, Blottner’s model is
adopted. All of the details to implement the Blottner’s model can be found in Ref. [45]:
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O2 þM$ Oþ OþM;

N2 þM$ Nþ NþM;

NOþM$ Nþ OþM;

Oþ NO$ Nþ O2;

Oþ N2 $ Nþ NO;
where M can be any of the five possible collision partners.
In Eq. (53), qi means the partial density of the ith species, and Si is the composition change source term due to chemical

reactions. Dc;i is the chemical diffusion coefficient computed by
Dc;i ¼
Mi

M
1� Ci

1� vi

l
qSc

;

where Sc represents the Schmidt number.M is the molecular mass, Ci is mass fraction of the ith species, and vi is given by
Cc;iðMi=MÞ. The total viscosity and conductivity are calculated using Wilke’s semi-empirical mixing rule [46].
l ¼
X

i

livi

Fi

; k ¼
X

i

kivi

Fi

;

where li can be defined by Blottner’s model [45]
li ¼ 0:1 exp ðAi ln T þ BiÞ ln T þ Ci½ �;
and for ki, Eucken’s relation is used [19]:
ki ¼ li
5
2

Cv;trans;i þ Cv ;rot;i

� �
:

Fi is given by
Fi ¼
X

j

vj 1þ
ffiffiffiffiffi
li

lj

s
Mj

Mi

� �1=4
" #2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 1þMi

Mj

� �s" #�1

:

Appendix B. Axisymmetric components of the multi-species GH constitutive relations

In the following equations, u and v denotes the z- and r-directional velocity, respectively.

1. ½Jidtu�ð2Þ components:
½Jidtu�ð2Þzz ¼ Jz;i u
@u
@z
þ v @u

@r

� �
�A;

½Jidtu�ð2Þzr ¼
1
2

Jz;i u
@v
@z
þ v @v

@r

� �
þ Jr;i u

@u
@z
þ v @u

@r

� �� �
;

½Jidtu�ð2Þrr ¼ Jr;i u
@v
@z
þ v @v

@r

� �
�A; Jidtu½ �ð2Þhh ¼ �A;

where

A ¼ 1
3

Jz;i u
@u
@z
þ v @u

@r

� �
þ Jr;i u

@v
@z
þ v @v

@r

� �� �
:

2. ½Pi � ru�ð2Þ components:
½Pi � ru�ð2Þzz ¼ Pzz;i
@u
@z
þPrz;i

@u
@r
�B;

½Pi � ru�ð2Þrz ¼
1
2

Pzz;i
@v
@z
þPrr;i

@u
@r
þPrz;i

@u
@z
þ @v
@r

� �� �
;

½Pi � ru�ð2Þrr ¼ Prz;i
@v
@z
þPrr;i

@v
@r
�B; Pi � ru½ �ð2Þhh ¼ Phh;i

v
y
�B;

where

B ¼ 1
3

Pzz;i
@u
@z
þPrr;i

@v
@r
þPrz;i

@v
@z
þ @u
@r

� �
þPhh;i

v
r

� �
:

3. ðPi þxfbDiIÞ : ru component:
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ðPi þxfbDiIÞ : ru ¼ ðPzz;i þxfbDiÞ
@u
@z
þ ðPrr;i þxfbDiÞ

@v
@r
þPrz;i

@v
@z
þ @u
@r

� �
:

4. ðdtuÞ � J component:
ðdtuÞ � Ji ¼ Jz;i u
@u
@z
þ v @u

@r

� �
þ Jr;i u

@v
@z
þ v @v

@r

� �
:

5. Ji � rðpi
qi
Þ component:
Ji � r
pi

qi

� �
¼ Jz;i

@

@z
pi

qi

� �
þ Jr;i

@

@r
pi

qi

� �
:

6. ½dtu � ðPi þxfbDiIÞ� components:
dtu � ðPi þxfbDiIÞ�z ¼ Pzz;i u
@u
@z
þ v @u

@r

� �
þPrz;i u

@v
@z
þ v @v

@r

� �
þxfbDi u

@u
@z
þ v @u

@r

� �
;

½dtu � ðPi þxfbDiIÞ�r ¼ Prr;i u
@v
@z
þ v @v

@r

� �
þPrz;i u

@u
@z
þ v @u

@r

� �
þxfbDi u

@v
@z
þ v @v

@r

� �
:

7. ½Q 0i � ru� components:
½Q 0i � ru�z ¼ Q 0z;i
@u
@z
þ Q 0r;i

@u
@r
; ½Q 0i � ru�r ¼ Q 0z;i

@v
@z
þ Q r;i

@v
@r
:

8. ½Pi � Q 00� components:
½Pi � Q 00�z ¼ Pzz;iQ
0
0;z þPrz;iQ

0
0;r ; ½Pi � Q 00�r ¼ Prz;iQ

0
0;x þPrr;iQ

0
0;y:
9. r � pi
p Iþ xfb

Re p DiIþ 1
Re p Pi

	 
h i
components:
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1
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:

10. ½r � ðPþxfbDIÞ� components:
r � PþxfbDIð Þ½ �z ¼
X

j

@Pzz;j

@z
þ @Prz;j

@r
þPrz;j

r
þxfb

@Dj
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� �
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r
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@r

� �
:

11. ½r � ðPi þxfbDiIÞ� components:
½r � ðPi þxfbDiIÞ�z ¼
@Pzz;j

@z
þ @Prz;j

@r
þPrz;j

r
þxfb

@Dj

@z
;

½r � ðPi þxfbDiIÞ�r ¼
@Prr;j

@r
þ @Prz;j

@z
þPrr;j

r
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12. ½Ji � ru� components:
½Ji � ru�z ¼ Jz;i
@u
@z
þ Jr;i
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@r
; ½Ji � ru�r ¼ Jz;i

@v
@z
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:

13. Components of j:
Pi : Pj ¼ Pzz;iPzz;j þPrr;iPrr;j þ 2Prz;iPrz;j þPhh;iPhh;j;

Q 0i � Q
0
j ¼ Q 0z;iQ

0
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0
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D0 ¼ �fbl
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¼ MMi
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q
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;

where
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X
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Mj
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M
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; ½di�r ¼

M
Mi

@

@r
qi

q

� �
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