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species gas containing monatomic and diatomic molecules is developed for the numerical
simulation of hypersonic rarefied gas flows. The multi-species GH computational model
includes monatomic and diatomic species of O,, N,, NO, O, N. The mass diffusion flux of
the gas mixture is included in the GH constitutive relation. In addition, the physical rela-
tionship between the mass diffusion and heat fluxes is added to the evolution equation

Z/;_isé. Ab set. The multi-species GH theory includes the rotational nonequilibrium effect of diatomic
47.11.Df molecules by introducing excess normal stress associated with the bulk viscosity.
05.70.Ln An efficient multi-species GH numerical solver for axisymmetric rarefied flows is then
51.10.+y developed by adopting various numerical techniques, such as an adequate nonlinear equa-
tion solver for the GH constitutive relation, an accurate flux splitting scheme, multi-grid
Keywords: convergence acceleration and slip-wall boundary conditions. For validation, the proposed
Generalized hydrodynamic equation computational model is applied to hypersonic rarefied flows over a space shuttle nose, a
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sphere and a reentry body as well as 1D shock structure. By comparing the results of the
multi-species GH model with those of the Navier-Stokes equation and the DSMC, the accu-
racy and physical consistency of the GH computational model are critically examined.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In recent past several decades, the study of nonlinear gas flows in rarefied condition has been treated as an important
topic. It has been motivated by the needs of tools to efficiently predict aero-thermodynamic loads on vehicles operating
in high altitude. From this point of view, the development of computational models to predict gas flows over a large portion
of rarefied flow regime is important. The primary physical parameter characterizing the rarefied flow is the Knudsen number
[1], which is not small in high altitude condition. Though the Navier-Stokes (N-S) theory is capable of treating flow phenom-
ena in a small deviation from the local equilibrium condition, it is not known to remain valid in the flow regime of a rela-
tively large Knudsen number [2,3].

Much effort has been put into the development of a computational model beyond the N-S equations. Numerical models
to predict the rarefied flow can be classified into two categories: the ‘full kinetic (or molecular dynamic) model’ and the ‘fluid
dynamic model’. In the former category, the direct simulation Monte Carlo (DSMC) is the most successful and powerful
method [4-6]. At least, in terms of accuracy, there seems to be no alternative yet which can provide better results than
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DSMC. However, computational load of DSMC is very costly in comparison with fluid dynamic model, particularly in the re-
gime near continuum limit [7]. Moreover, much experience is required to properly operate many tunable parameters.

On the other hand, fluid dynamic model is more attractive in terms of computational time cost and mathematical mod-
elling. They can be formulated by hyperbolic conservation laws and some additional nonconserved variables. The noncon-
served variables, such as the stress, the excess normal stress, the heat flux and the diffusion flux, are determined by the
evolution equations which are derived with the help of the Boltzmann equation [2,8]. So far, several fluid dynamic models
have been developed, such as the Bahtnagar-Gross—-Krook (BGK) method [9,10], Burnett-type equations [11] and the Grad’s
moment method [2]. BGK method models the molecular collision term of the Boltzmann equation through the evolution pro-
cess from the initial nonequilibrium to the final equilibrium state over the relaxation time scale. Various computational
investigations based on the BGK theories have been carried out [9,10]. Some computations based on the Burnett-type equa-
tions, however, have shown several difficulties, such as numerical instability, violation of the second law of thermodynamics
and the treatment of boundary condition. While the Maxwell-Grad moment method satisfies the second law of thermody-
namics in the near equilibrium condition, it is not assured whether it is also valid in the condition far from the equilibrium
[2].

Because physical consistency is as much important as computational efficiency, it is desirable to derive a fluid dynamic
model for rarefied gas flows under the constraint of the fundamental physical laws, such as the second law of
thermodynamics.

The generalized hydrodynamic (GH) theory developed by Eu [2,8,12-14] is derived under the strict constraint of the sec-
ond law of thermodynamics. With the help of modern CFD techniques, there have been some effort and progress to establish
a GH computational model for a single species gas in two-dimensional setting [7,15]. However, the axisymmetric extension
of the diatomic GH model and the development of the multi-species GH model are prerequisite for realistic rarefied flow
simulations. In addition, the effects of chemical reaction and the heterogeneous collision between monatomic and diatomic
molecules have to be included for an accurate numerical modeling. Thus, the setup of the GH constitutive relations including
heterogeneous molecular composition of species is essential.

Keeping these in mind, the GH computational model for multi-species gas including monatomic and diatomic molecules
is developed, and it is extended into an axisymmetric formulation in the present work. By combining the monatomic multi-
species [2] and diatomic single species GH models [8,7,16], the multi-species GH constitutive relations are formulated. The
multi-species GH model takes into account the mass diffusion owing to molecular collision and thermal interaction. The ex-
cess normal stress is considered to represent the rotational energy of diatomic molecules.

To assess the reliability of the model and the accuracy of computational approximation, the proposed multi-species GH
computational method is applied to the hypersonic rarefied flows over an axisymmetric shuttle nose, a sphere and a reentry
body as well as 1D shock structure. The computed results are critically compared with the N-S and DSMC data.

2. Generalized hydrodynamic theory

Fluid dynamic approaches to compute rarefied flows generally start from the Boltzmann equation [2,17]. The formulation
of the nonequilibrium distribution function to treat the collision term of the Boltzmann equation provides the foundation of
each fluid dynamic theory, such as the BGK method [9], the Burnett equations [11] and the Grad’s moment method [2]. In
formulating those nonequilibrium distribution functions, there is no explicit constraint on the second law of thermodynam-
ics [2,15], which indicates that some of the methods may not guarantee the positive entropy production.

On the other hand, the GH theory is derived under the strict constraint of the second law of thermodynamics. The non-
equilibrium distribution function in the GH theory is defined as the following exponential form [2,12]:

1 (1
f=exp |:kBT<2mC2+Hrot+ E X(“)@h(“)uo>:|, (1)
=1

A detailed explanation for Eq. (1) will be given later. Following the above definition of the nonequilibrium distribution
function, the entropy production can be expressed as

Gent = kpicsinh i, 2)

where kg is the Boltzmann constant, and x is the first-order cumulant introduced in deriving the entropy production. The
detailed derivation of the entropy production can be found in the Ref. [2].

From Eq. (2), it is clear the entropy production is positive-definite, because x is proportional to the square root of squared
nonconserved variables (x will be explained in the later part of this paper). This means that the GH theory always satisfies
the second law of thermodynamics.

The primary difference between the GH model and the N-S model lies in the level of realizing the nonequilibrium effects
in rarefied flow. In rarefied flow, the frequency of molecular collision is substantially reduced, and molecules need a longer
time to reach the equilibrium state. The Navier-Stokes equations, on the contrary, assume the ‘locally thermal equilibrium’,
which indicates that the gas model would take a shorter time to reach the equilibrium state. Even for high Knudsen number,
the Navier-Stokes equations produce too much stress and heat flux (or too much momentum and energy exchange between
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molecules), which is clearly contrary to the physics of rarefied flow. As quantitatively compared in Section 4, the stress and
heat flux distributions provided by the GH model are asymptotically finite.

2.1. Derivation of the multi-species GH equations

By properly combining the GH theories for single species diatomic gas and monatomic gas mixtures [2,8], the general
multi-species GH theory for heterogeneous gas including both monatomic and diatomic molecules can be derived.

The derivation process of the multi-species GH theory starts from the definition of the nonconserved variables (#/*) in
terms of the nonequilibrium distribution function (f;) and the molecular expressions (h;) [2,12]. From now on, subscript i or j
indicates the ith or jth species unless mentioned otherwise:

o = (h"fi(v.r.1)). (3)

1

Here, (A) indicates the mean value of A over particle velocity space
@) = [ Av)fi(v.r.0dv.

In Eq. (3), ! are defined as

h" = [micici]?,

1
h? = %micf — %,
i
(4)
1
hl@) = (imiciz +maf; — Cp.iTmz‘) Ci,
h§4) = mM;C;,

where m;, p; and n; represents the molecular mass, the partial pressure and the number density of the ith species in gas mix-
ture, respectively. C,; is the specific heat of the ith species per mass at constant pressure. [A]®’ is defined by
1 1
A* =5 (A+A) ~ 5 Tr(A)L,
where Tr(A) is the trace part of matrix A, and I is the unit matrix.
With the definitions in Eq. (4), the nonconserved variables can be expressed as
V= Hi7 (D(Z) = 4;,

@ 1

3) _ o @ (5)
Q7 =Q;=Q;-CT), &7 =]
In the above relations, IT;, 4;, Q;, Q; and J; represents the stress tensor, the excess normal stress, the heat flux vector, the

total heat flux including diffusion effect and the diffusion flux, respectively. In the GH theory, the stress tensor P is decom-
posed into hydrostatic pressure p, stress IT and the excess normal stress A:

P=pl+ 11+ AL

(
1
(
i

The excess normal stress is related to the bulk viscosity and vanishes for monatomic molecules [2].
Inserting Egs. (3)-(5) into the Boltzmann-Curtiss equation, the evolution equations of the nonconserved variables can be
obtained [16,18]. The Boltzmann-Curtiss equation is expressed as

0 ji 0 . . _
<E+v‘v+l_187e>ﬁ(v’r“l’ye’t)R[ﬂ’ (6)

where j and j denotes the angular momentum vector of diatomic species and its magnitude, respectively. 7. is the azimuth
Euler angle and R([f] is the collision integral. As mentioned previously, the nonequilibrium distribution function of the ith spe-
cies can be defined in the following exponential form:

1 (1
fi=exp {kBT (2 mic + Hroe + X 0 b — ﬂo,i)} : (7)
a=1

where 1, ; is the normalization factor. The symbol ® denotes the scalar product of tensors XE” and h{™. H is the rotational
Hamiltonian of diatomic species, which is defined as

J-]
Hrot :j~ (8)

Here, I is the moment of inertia of a diatomic molecule.
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In Eq. (7), XE“’ can be treated as the function of macroscopic variables, such as density (p;), flow velocity(u) and total
energy(E):
X0 = g, ©)

1

where g* can be approximated as follows [2,12]:

1 3 1 1
Mo — g2 g8 , gV ~—. 10
&i 2p; & 2p;’ &i piGpiT’ &i Pi 10

With the definitions in Eqs. (4), (5) and (7), the Boltzmann-Curtiss equation provides the general form of the evolution equa-
tions as

pap

where V - y!* represent the fluxes of h\”, which are mathematically one-order-higher than ¢*. In general, these terms are
reducible moments and can be set equal to zero [2,12].
In Eq. (11), the Z™ can be described as follows:

Z) = =2(p; + w4)[Vu]? - 2[J,deu)® - 2[11; - Vu]?),
2 3 D;

@2 __2 V(A N - hel A8 i

VAR 3w{dtu J,+/(A,l+l'[,).Vu+2Jl V(p)},

i

(%)
(o) - -vw ez n

78 = _C,iT(p; + wA)VINT — du - (I + wAT) — Q) - Vit — I - o VT, (12)

7% =V . (pl+ oAl +1I) +%v : (n + Z(wzb)l) — V- (I + w4l) - J; - Vu — pd..
J

Here, d; means the material derivative, and A:B indicates the double scalar product or A;B; in tensorial notation.

Y = (5 — 3y)/2 with the specific heat ratio of y, and Q; = Q; — C,,;TJ; is the heat flux vector without diffusion effect. In the

fourth relation, d; = V(n;/n). The parameter w is 1 for diatomic species and 0 for monatomic species.

Eq. (11)is the universal evolution equation for the fluid dynamic methods, and it does not have any special approximation
[2,12]. The difference of the GH equations from other fluid dynamic models lies in the definition of the dissipation terms or
AP,

The dissipation terms of the GH equations are defined as the following relations:

AL = ~2p,q() > o m, (13)
=1
@_ 2 ~ 2(22)
AT = —§P,~Q(K) 2 R~ 4;, (14)
=
AP = =piCyiTg() Y (ﬂiﬁ”Q} + % %) (15)
J=1 J
4 2 43 an Jj
AP = —q(0) 30 | Q)+ R L) (16)
j=1 p;
where
sinhx
q(K) = s (17)

K can be derived by using the cumulant approximation, and it is expressed as

2 & % J [ e@a L w@n
K 7’<3TZ >+,0' <“Rij Qj'i‘iR,‘j p>}7 (18)

ij=1 ! ]

i J
RV I+ R 404, + Q) - (W§J~33)Qj + R ﬁ
J

where g is the relative velocity of molecules defined as

1 m
= 2 f\ 2T (19)

and r indicates the number of species.

Unlike Z{* of Eq. (12), 4{” and  of Eqs. (13)-(18) contain R”. %™ are related to the collision integrals R[f] between

various species, which can be defined by ®{"’ = &g/ R"g/". Ri"" are the collision bracket integrals and can be determined
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by molecular properties such as molecular mass, random velocity and so on. As shown in Table 3.2 of Ref. [12], the math-
ematical process to completely determine R}jf“”) is too complicated. For an efficient computational implementation without
compromising the essence of the collision bracket integrals, the following simple formulation is used [12]:

—2[Vu)® = q(x) ; RV, (20)
—y’V~u_q(K)j2r;m§j?2)Aj7 (21)
—VInT =q(x) ; (m,g”)Q; + 0Py ;f]) 7 (22)
- %di = q(x) ; (m;‘”)Q} + R %’j) : (23)

According to Eu’s works [2,8,12-14], Egs. (20)-(23) are still reliable in large Knudsen number flows. Thus, they can be
used to obtain A;“) without the detailed determination of the collision integrals Rf,j“"), which eventually leads to the proper
constitutive relations for the multi-species GH computational model.

2.2. Determination of A\

In order to obtain AE“) without “J%Ej“ﬂ). Eqgs. (13)-(16) are firstly converted into the following matrix equations:

A = —q(1)ST, (24)
A® = —q(1)RAs, (25)
APY = —q(r)MQ;, (26)
where bold characters are defined as follows:
(1)
3 I i
A= o f, Ss=| ¢+ ) M= |,
g R .
Pr
34%)
- U n
A? = R=| : - A= :
i3 WP 0 z
A(3) ’
U A Q
oo | | [ e |
B Tl RW L Rj@ g@ o poée) | L=
Ag) 1 1r 1 1r P
: '43 ’ . ;14 . . J;
A W WO e k
Then, Eqgs. (20)-(23) can then be expressed as follows:
r r
q(x) Y1 = =2[Vu® Y (ST, (27)
i-1 ij=1
T T 1
Q(K)Z]:Ai = —V~uZl(R’ ijs (28)
1= ij=
r T T
- - p
q(1)>" Q) =-VInT} M) - > )P N, (29)
i=1 ij=1 ij=1 i
~ J; — _VInT . M- 1)@ . M1 p d 30
Q(K)Z;f— nT» M) = M o 4 (30)
i=1 i ij=1 ij=1 i
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Here, the relations of the first-order Chapman-Enskog transport coefficients are introduced [12]:

T T

Ko = Z(Si])ijﬁ Hpo = Z(R71)57 (31)
ij=1 ij=1
Jo =" (M ")F, (32)
ij=1
] )
DR =3 5 (M. D= [’jj (M), (33)
<

where u, is the bulk viscosity, and 4 denotes the heat conductivity multiplied by temperature (1 = kT). D and Dr; represents
the diffusion and the thermal diffusion coefficient, respectively.

By using Eqs. (31)-(33) and the symmetry of R = ®/* (or equivalently, the symmetry of (M ")> = (M ")), Egs.
(27)-(30) can be expressed in terms of the first- order Chapman Enskog transport coefficients:

K) im = —20,[Vu]?, (34)
i=1
) ii:m — 1,V -, (35)
ZQ = —VInT - pZDﬁdH (36)
Z L _ ZDT,p,VlnT Y%, (37)
ij=1

From Eqgs. (34)-(37), the proper relations for the right hand side of Eqs. (20)-(23) are obtained as follows:

1 T
Vu® = fz—%q(x);l'[f, (38)

1 T
Vou=—— 4, 39
u ubﬂq(;c); (39)
VinT = -q00 @, (40)

i=1

Py _ iy i ki

D —pau) |0, -] (@)

where D is the matrix of the diffusion coefficients Dy, and kr; is the thermal diffusion ratio. The following relation is valid
between the thermal diffusion and binary collision diffusion coefficients [17,12]:

r
DTJ‘ = Z kTJ‘D,'j. (42)
=

In deriving Eqgs. (38)-(41), it is assumed that the terms such as V - u, [Vu]® and 4,V InT are global properties, and they
do not explicitly depend on the species. For example, the stress of each species is defined as IT; = ui[Vu](z), not as
I; = 14,[Vw)®, and the global stress becomes the sum of II; gi.e., =30 0= —24,[Vu]® = -2(X0, 1) [Vu]® and
Sl = Hg)- The diffusion flux J; consists of the binary collision diffusion and the thermal diffusion:

T T
=Y Dydi+Dr;VInT = > Dyi(d; + kr;VInT). (43)
=1 j=1
By inserting Egs. (38)-(41) into Egs. (20)-(23) and Egs. (13)-(16), the final formulation of A,@ can be obtained:
Al 2k Pi g Z m;, (44)
27D
AP =2 T8 q) S A, 45
P )Z , (45)
AP = BT g ZQ,, (46)

AY = pq(x) [( Y, % - @Q,} (47)
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The heterogeneous collision between monatomic and diatomic molecules is taken into account through the diffusion ma-
trix in Eq. (47). Since only diatomic species can produce the excess normal stress, 4; is vanished for monatomic species. The
parameter w is introduced in Eq. (12) to check the excess normal stress. For monatomic species, the excess normal stress
relation (AEZ)) and 4; are discarded by setting o = 0.

In the diffusion relations, the binary diffusion coefficient (D;) and the thermal diffusion ratio (kr;) corresponding to mon-
atomic-monatomic, diatomic-diatomic and monatomic-diatomic collisions have to be distinguished. According to Ref. [17],
thEy lie in the range of Dmonatomic—monatomic = 01_02- Dmonatomic—diatomic ~0.4-0.5 and Ddiatomic—diatomic =~ 0.6—0.8. In this WOl'k,
Dimonatomic—monatomic = 0.18, Dimonatomic—diatomic = 0.48 and Dgjatomic—diatomic = 0.65. The thermal diffusion coefficient kr; is defined
as kr; = o(n;/n)(n;/n), where o = 0.02 and (n;/n) is the mole fraction of the ith species.

By using the relations of Egs. (20)-(23) and Eqgs. (38)-(41), k (or Eq. (18)) can be converted into the following expression:

g ! II; : l_lj ,A,‘Aj Q,; : Q]I
K2 =2 N I Y, . Y AL 48
kBT ; ‘uo ’V :u'b_o 0 p ij> J ( )

In summary, two key-ingredients for the computations of the multi-species GH equations are examined in this section:
one is the determination of dissipation terms A,@ in an explicit from of conserved and nonconserved variables, and the other
is the appropriate treatment of heterogeneous molecular collisions.

2.3. The constitutive relations of the multi-species GH theory

The constitutive relations of the multi-species GH theory can be obtained by inserting Eq. (12) and Eqgs. (44)-(47) into Eq.
(11):

d (M _ ) @ @) ) @ _bi ~
Par (?) = =2(pi+ 04)(Vu® — 2[deu)® — 2T, - Vul® ~ 2L (x) Z;H (49)

d [4; o 2 2“ 4 N Di zﬂlpi r 4
P& (;) =—-w [Bdtu Ji +§/ (41 +1L) : Vu+]; - V(H) +§/ :ubq(K);Al} (50)
p% (%) = CoiT(pi + @A)V INT — deut- (I, + wAT) — Q- Vu — T, - Cp VT — Fqu Q. (51)

i=1
P% (%’) =V (pl+ o041+ 11;) +%V- <1‘li+2(a)4|j)l> — V- (I + w4l) - J; - Vu — pd;
=1
-1 .'i kT.i ’
~pat) |01 g .

Eqgs. (49)-(52) contain the cases of the single species GH theory for diatomic gas and the multi-species GH theory for mon-
atomic gas. From Y[ ,IT; =11, >/ ;4; = 4 and }_] ,Q; = Q/, and by ignoring the diffusion relations, they reduce to the GH
constitutive relations for diatomic single species gases. Furthermore, if the excess normal stress for diatomic species is ig-
nored (or = 0), the GH constitutive relations for single species monatomic gases can be obtained.

Together with the constitutive relations, the following extended conservation laws become the axisymmetric governing
equations for the multi-species GH theory:

P pu 0 0
ol pul|, o | puuspl . S (T + oA4) L (HtH) |0 (53)
ot | pE (pE +p)u S+ o4l -u+Q y o)

b pu 4D 5

where H and H,, is the inviscid and viscous axisymmetric source term, respectively, defined as in the N-S theory. The last line
of Eq. (53) is the chemical species equation explained in Appendix A.

Although the derivation process of the GH governing equations is rather complicated, the mathematical form is quite sim-
ilar to the conventional N-S equations except for the presence of the excess normal stress. The nonconserved variables, such
asII, 4, Q and ], are determined from the GH constitutive relations.

The thermodynamic path of the GH theory is exact so long as no approximation is introduced in the derivation procedure.
Firstly, the evolution equation in Eq. (11) including Eq. (12) is thermodynamically exact since there is no assumption. For f; in
Eq. (7) and A,@, the thermodynamic path may depend on the definition of the term XE“) in f; and A;“). Therefore, the GH the-
ory is theoretically solid in its original form but, as in Eq. (9), some approximation at implementation step may not guarantee
the exact thermodynamic path. From this perspective, we are going to examine the level of physical/numerical accuracy and
robustness of the GH equations, which is seriously deteriorated in other continuum-based computational models such as
Burnett-type equations. Considering the violation of the second law of thermodynamics of the Burnett equations, the GH
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theory is physically much more preferable than the Burnett equations and the Navier-Stokes equation. In addition, it has
been proved that the GH theory satisfies the H-theorem so that the final entropy production, unless the flow is isentropic,
is always positive-definite [2,8,12].

3. Computational model for the multi-species GH theory

The constitutive relations of the multi-species GH theory are composed of a coupled set of nonlinear differential equa-
tions, and it is very costly to directly solve them. With a suitable physical assumption, however, they can be converted into
a set of nonlinear algebraic equations. In this section, the computational procedure of the multi-species GH theory is de-
scribed. In addition, the axisymmetric extension of the GH constitutive relations and the slip-wall boundary condition are
explained.

3.1. The computational model of the GH constitutive relations

The left-hand-side of the constitutive GH relations (Eqs. (49)-(52)) is the time-derivative term of the nonconserved vari-
ables. The time scales to reach the equilibrium state between the conserved variables (p, u and E) and the nonconserved vari-
ables (IT, 4 and Q) are generally different depending on the order of gas particle moments [1]. According to Eu’s adiabatic
approximation [2], the nonconserved variables change much faster than the conserved variables and quickly reach to steady
states. Thus, the time-derivative term can be neglected, and Egs. (49)-(52) can be simplified into a set of nonlinear algebraic
equations. For example, Eq. (49) becomes

Z I = —2(p; + wA4)[Vu]® - 2[J;da)® — 2[11; - V], (54)

After a suitable nondimensionalization, the dimensionless algebraic form of the constitutive relations can be obtained as
follows:

L 2 2
>2<—f> e 8 I - o
f u Di
ZA = do—fizb 5 I foail) - Vu 5 b o [dfu i+ <p,~>}’ (56)
o (Ufb 1 14 ) ) 1 1
x)j;cz,-f(l R 1)@ g (T 0dl) — i by Vu o, (57

i =Dpoyi] _ (Piy, @ 1 4 PoPi
q(x)|(D )ipi Br Ql} =poV <pl+R—epA,I RepH pV (T + wfpAl)
Po ) n__Po y. 4.
Repv (IT; + wfp4) RepSCJI Yu —d;. (58)

And, the first-order cumulant k in Eq. (48) becomes

T

K? = Rgp Z |:H,' 10 + (U“//fbAiAj +— 0= ) Q Q + d d:| (59)
ij=1

where S, and Pr is the Schimdt number and the Prandtl number, respectively.

In Eq. (59), fy = 1,/ 1, and the constant c takes a value between 1.0138 (Maxwellian molecule) and 1.2232 (v = 3) [17]. vis
the exponent of the inverse power law for the gas particle interaction potential. The subscript 0 indicates the first-order
approximation of the Chapman-Enskog expansion or the value obtained by the N-S theory. Thus, the stress and the heat
flux by the N-S theory can be described as

=2uVu®, Ag=-p,V-u, Qy=-iVInT. (60)

Egs. (55)-(59) can be solved by a suitable numerical solver. In computation, the N-S stress and heat flux can be used as
the initial conditions of the GH constitutive relations. Overall computational procedure will be explained in Section 4.

3.2. The axisymmetric GH constitutive relations

The axisymmetric GH computational model is obtained by decomposing IT, Q and J into cylindrical coordinates, (r, 0, z)
with the assumption that all components of the 0 direction are zero, i.e., uy, (%, Q; = 0. Care must be taken that the 69 com-
ponent of tensor, such as Iy, does not vanish since ITyy = —(I1,, + II,;). All components of the axisymmetric constitutive
relations are listed in Appendix B.
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3.3. Slip-wall boundary conditions

Appropriate slip-wall boundary conditions are crucial in rarefied flow computations because the velocity-slip and tem-
perature-jump provide a significant impact on computational accuracy. Since rarefied gas molecules near wall boundary
do not have enough collisions to reach the equilibrium state, the non-slip boundary condition is not consistent with the
molecular physics. As a slip boundary condition, the Langmuir slip condition [21] and the Maxwell-Smoluchowski condition
[25,26] are employed in the present work.
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Fig. 1. Normalized density distribution for a diatomic gas(M = 2.0). Experiment data are taken from Alsmyer’s work [34] and diatomic GH result by Al-Goul
et al. [37] is also depicted.
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The Langmuir boundary condition can be expressed as
Us = oty + (1 —a)ug, Ts =0Ty, + (1 —o)Ty, (61)

where the subscript s represents slip quantity, w stands for the wall and g denotes the local gas flow value adjacent to the
wall. The parameter o plays a role of determining the portion of wall and gas characteristics, which can be described as [22-
24]

o /B, D /B, D
_nN21+\//T2p+nozl+\//T2p, (62)
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Fig. 3. Normalized density distribution for a diatomic gas(M = 6.1). Experiment data are taken from Alsmyer’s work [34].
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where ny, and no, represents the mole fraction of nitrogen and oxygen, respectively. Other species with very small number
densities are ignored. The parameter  depends on the wall temperature T,, and the interfacial interaction parameter. For the
case of the gas—surface interaction,  can be expressed as

Al D.
B g exp (,<BTW)7 (63)

where A, D, and [ is the mean area of a site, the potential parameter and the mean free path, respectively. In many cases, the
potential parameter D, can be experimentally obtained. D, = 1.32 kcal/mol is used for Ar-Al or N,—Al molecular interaction
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Fig. 5. Inverse shock density thickness for a diatomic gas (nitrogen, s = 0.78). Symbols are: (<l) by Greene and Hornig [30]; (A) by Linzer and Hornig [31];
(>) by Camac [32]; (¢) by Robben and Talbot [33]; (O) by Alsmyer [34]. (O) represents the DSMC result by Boyd [35]. (V) is the GH result by Al-Ghoul et al.
[37]. Symbol (a), (V), (W) represents N-S, monatomic GH and diatomic GH, respectively.
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model. D, for oxygen varies in the range of 3-8 kcal/mol according to the surface material and D, = 5 kcal/mol is taken in the
present work. The merit of the Langmuir boundary condition is that every parameter is determined without any tunable

parameter.

The Maxwell-Smoluchowski boundary condition can be expressed as [25,26]

Ug —

Uy =

Ty — Ty

Fig. 8. Normalized entropy distribution for argon gas (M = 1.4). ES-BGK data are taken from the work by Chigullapalli et al. [39].
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Q, and Q, are the tangential and normal heat transfer components in gas, and 7 is the viscous stress component correspond-
ing to the skin friction. R is the specific gas constant. ¢, and o7 are the accommodation coefficients usually taking a value
from 0.2 to 0.8. The term proportional to (—Qy) in Eq. (64) is associated with the thermal creep phenomenon, and it is ignored
for constant wall temperature.

Furthermore, the second-order Maxwell boundary condition and the second-order boundary condition by Karniadakis
and Beskok are employed [25,26]. The second-order Maxwell boundary condition can be expressed as
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Fig. 9. Entropy generation rate distribution for argon gas (M = 1.4). ES-BGK data and gas dynamic data are taken from the work by Chigullapalli et al. [39].
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Symbol represents the DSMC data (a) by Wu et al. [38] and diatomic GH data (OJ) by Myong [7].
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Fig. 11. Density profiles along the stagnation streamline (x = 0: stagnation point).

Fig. 12. Nondimensionalized density contours (log-scaled) by multi-species N-S and multi-species GH solvers.
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The second-order boundary condition by Karniadakis and Beskok can be represented as

Ug — Uy =

20y p_ou oo ou
T |p(2RTy/m)"* ON " 2p2(2RT,,/7) % — up(2RT,y/m)"/ 24 O |

Fig. 13. Nondimensionalized temperature contours by multi-species N-S and multi-species GH solvers.
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Fig. 14. Density distributions along the stagnation streamline (x = 0: stagnation point).
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The temperature boundary condition is the same as Eq. (67). The effects of the boundary conditions will be discussed in Sec-
tion 4.2.

4. Numerical methods and computational results

The multi-species N-S solver including chemical reaction model is used as a baseline solver. The multi-species GH solver
is obtained by adding the multi-species GH constitutive relations combined with the Broydn nonlinear iterative solver [27]
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Fig. 15. Density distributions (GH results only) along the stagnation streamline (x = 0: stagnation point).
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into the multi-species N-S solver. The computational code employs accurate and efficient numerical techniques based on
finite volume method. As a cell-interface numerical flux, AUSMPW+, which is an improved AUSM-type scheme, is used
[28]. The second-order MUSCL with van Albada limiter is used to avoid numerical oscillation, and the LU-SGS scheme is
adopted as a time integration method. Since chemical and rarefied nonequilibrium effects cause small time step and slow
convergence, a four-level multi-grid method with parallel computing is used to minimize computational load. Chemical
source term is implicitly treated with the diagonal term of the source term Jacobian matrix (9S/0Q).

The multi-species GH solver has been developed by the step-by-step strategy. Starting from the one-dimensional dia-
tomic single species GH solver, it has been expanded into the two-dimensional and axisymmetric single species GH solver
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Fig. 17. Temperature distributions (GH results only) along the stagnation streamline (x = 0: stagnation point).
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Fig. 18. Normalized entropy distribution (S/S.,) along the stagnation streamline (x = 0: stagnation point).
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for diatomic gas, and the axisymmetric multi-species GH solver. Each GH solver has been critically examined through suit-
able validation test cases.

4.1. Validation of the GH solvers for single species gases

Since the accuracy of the multi-species GH solver depends on that of single species monatomic and diatomic GH solvers,
the performance of the diatomic GH solver is firstly examined. One-dimensional normal shock wave structure is computed

using the one-dimensional diatomic GH solver. The Knudsen number is fixed as 1, and the Reynold number is calculated by
Eq. (69) for the inflow Mach number of 1-10 [29]:

Kn = /?Rﬂe. (69)
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Fig. 19. Error history curves of the N-S and GH equations. CFL number is 0.01.

Fig. 20. Normalized density contours around the sphere.
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For nitrogen gas, the viscous power law (u = T") is used with the exponent of v = 0.78. The computed results of the nor-
malized density and temperature distributions for M = 2.0 and 6.1 are presented in Figs. 1-4. In Figs. 1 and 3, the diatomic
GH result is the closest to the experimental data, compared with the N-S and monatomic GH results. As seen in Figs. 1 and 2,
the present diatomic GH results agree well with the results by Al-Ghoul et al. [37].

The inverse shock thickness, which is one of the important parameters characterizing the shock wave structure, is de-
picted in Fig. 5. The inverse shock thickness is defined as follows:

1 |dp/dx|
2 %P/ % max 70
0 Pa—p (70)

Compared with the N-S and monatomic GH results, the diatomic GH equations provide the closest result to many exper-
imental data [30-34] as well as the DSMC result [35]. In addition, the present GH result agrees well with the computation by
Al-Ghoul et al. [36,37]. The normalized density and overall temperature distributions are also compared with the DSMC re-
sults. As shown in Figs. 6 and 7, the multi-species GH results show a good agreement with the DSMC data [35].

To examine the entropy characteristic, the normalized entropy and entropy generation rate of the one-dimensional nor-
mal shock are compared with the work by Chigullapalli et al. [39]. The test gas is argon. The entropy is calculated by [40]

() ()
S—So=pR|——=1In(= ) —-In(=—]||, 71
’ p[w—l (To> (po 7h
and the entropy generation rate is calculated by [39,40]
c (pvis ﬁ VR .
S= T +Pr—y—1(VT vT), (72)

whe